
USDV

Smart Contract Security Assessment

October 26, 2023

Prepared for:

USDV

Prepared by:

Jasraj Bedi, Katerina Belotskaia, and Aaron Esau

Zellic Inc.

Contents

About Zellic 3

1 Executive Summary 4

1.1 Goals of the Assessment . 4

1.2 Non-goals and Limitations . 4

1.3 Results . 5

2 Introduction 6

2.1 About USDV . 6

2.2 Methodology . 6

2.3 Scope . 7

2.4 Project Overview . 8

2.5 Project Timeline . 8

3 Detailed Findings 9

3.1 Inverted authentication logic in VaultManager.setRole 9

3.2 Ability to cause reversion on destination chain 11

3.3 Inverted authentication logic in VaultManager.rotateMinter 14

3.4 Redemption with positive delta fails to update shares 16

3.5 The pendingRemint[delta.color] is mistakenly reduced 18

3.6 Use of blocking LzApp . 20

3.7 Arithmetic error in redeem . 22

3.8 Bypassable minterRemintFee and operatorRemintFee 24

3.9 Unimplemented ping function . 25

4 Discussion 26

Zellic 1 LayerZero Labs

4.1 Ability to rotateMinter to 0 address . 26

4.2 Enforced color is per chain . 26

5 Assessment Results 27

5.1 Disclaimer . 27

Zellic 2 LayerZero Labs

About Zellic

Zellic was founded in 2020 by a team of blockchain specialists with more than a
decade of combined industry experience. We are leading experts in smart contracts
and Web3 development, cryptography, web security, and reverse engineering. Be-
fore Zellic, we founded perfect blue, the top competitive hacking team in the world.
Since then, our team has won countless cybersecurity contests and blockchain secu-
rity events.

Zellic aims to treat clients on a case-by-case basis and to consider their individual,
unique concerns and business needs. Our goal is to see the long-term success of
our partners rather than simply provide a list of present security issues. Similarly, we
strive to adapt to our partners’ timelines and to be as available as possible. To keep
up with our latest endeavors and research, check out our website zellic.io or follow
@zellic_io on Twitter. If you are interested in partnering with Zellic, please contact us
at hello@zellic.io.

Zellic 3 LayerZero Labs

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io

1 Executive Summary

Zellic conducted a security assessment for LayerZero Labs from September 25th
to October 10th, 2023. During this engagement, Zellic reviewed USDV’s code for
security vulnerabilities, design issues, and general weaknesses in security posture.

The follow up patches were reviewed upto the commit e20bf331

1.1 Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to
answer. These questions are agreed upon through close communication between
Zellic and the client. In this assessment, we sought to answer the following questions:

• Is it possible for a minter to abuse the design to reap more rewards than they
should be entitled to?

• Is it possible for a minter to be in a non-remintable state when they are in a
deficit?

• Can flash loans lead to unfair coloring for the distributors / TVL aggregators?
• Is the cross-chain messaging secure and sound?
• Is the instant finality guarantee always maintained?

1.2 Non-goals and Limitations

Wedid not assess the following areas thatwere outside the scope of this engagement:

• Front-end components
• Infrastructure relating to the project
• Key custody
• MM components

Due to the time-boxed nature of security assessments in general, there are limitations
in the coverage an assessment can provide.

The focus of this assessmentwas the general design and architechture of USDV and its
asynchronous cross-chain nature. The review of the implementation was secondary,
with majority of the time being spent on the potential abuses of the unique design of
the project.

Zellic 4 LayerZero Labs

https://github.com/LayerZero-Labs/usdv/commit/e20bf331e10a84294ef2424202fc5bc364b12e23

1.3 Results

During our assessment on the scoped USDV contracts, we discovered nine findings.
Two critical issues were found. Three were of high impact, one was of low impact,
and the remaining findings were informational in nature.

Additionally, Zellic recorded its notes and observations from the assessment for
LayerZero Labs’s benefit in the Discussion section (4) at the end of the document.

Breakdown of Finding Impacts

Impact Level Count

Critical 2

High 3

Medium 0

Low 1

Informational 3

Critical

High

Low

Info

Zellic 5 LayerZero Labs

2 Introduction

2.1 About USDV

USDV is an omnichain stablecoin backed by a basket of whitelisted, highly secure
assets such as T-Bills tokens. USDV is fully compatible with the ERC-20 standard and
built with a novel coloring algorithm that attributes minters in circulations.

2.2 Methodology

During a security assessment, Zellic works through standard phases of security
auditing including both automated testing and manual review. These processes can
vary significantly per engagement, but the majority of the time is spent on a thorough
manual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses
primarily on the following classes of security and reliability issues:

Basic coding mistakes. Many critical vulnerabilities in the past have been caused by
simple, surface-level mistakes that could have easily been caught ahead of time by
code review. Depending on the engagement, we may also employ sophisticated
analyzers such as model checkers, theorem provers, fuzzers, and so on as necessary.
We also perform a cursory review of the code to familiarize ourselves with the
contracts.

Business logic errors. Business logic is the heart of any smart contract application. We
examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like
unrealistic tokenomics or dangerous arbitrage opportunities. To the best of our
abilities, time permitting, we also review the contract logic to ensure that the
code implements the expected functionality as specified in the platform’s design
documents.

Integration risks. Several well-known exploits have not been the result of any bug
within the contract itself; rather, they are an unintended consequence of the contract’s
interaction with the broader DeFi ecosystem. Time permitting, we review external
interactions and summarize the associated risks: for example, flash loan attacks,
oracle price manipulation, MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the codebase in general.
We look for violations of industry best practices and guidelines and code quality

Zellic 6 LayerZero Labs

standards. We also provide suggestions for possible optimizations, such as gas
optimization, upgradeability weaknesses, centralization risks, and so on.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood.
There is no hard-and-fast formula for calculating a finding’s impact. Instead, we
assign it on a case-by-case basis based on our judgment and experience. Both the
severity and likelihood of an issue affect its impact. For instance, a highly severe issue’s
impact may be attenuated by a low likelihood. We assign the following impact ratings
(ordered by importance): Critical, High, Medium, Low, and Informational.

Zellic organizes its reports such that the most important findings come first in the
document, rather than being strictly ordered on impact alone. Thus, we may
sometimes emphasize an “Informational” finding higher than a “Low” finding. The key
distinction is that although certain findings may have the same impact rating, their
importancemay differ. This varies based on various soft factors, like our clients’ threat
models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of
security issues at present.

Finally, Zellic provides a list of miscellaneous observations that do not have security
impact or are not directly related to the scoped contracts itself. These observations
— found in the Discussion (4) section of the document — may include suggestions for
improving the codebase, or general recommendations, but do not necessarily convey
that we suggest a code change.

2.3 Scope

The engagement involved a review of the following targets:

USDV Contracts

Repository https://github.com/layerZero-Labs/usdv/

Version usdv: 2c4196c1c0c1020f1de52d605e837672b6328645

Program packages/usdv/evm/contracts/contract/**.sol

Type Solidity

Platform EVM-compatible

Zellic 7 LayerZero Labs

https://github.com/layerZero-Labs/usdv/

2.4 Project Overview

Zellic was contracted to perform a security assessment with three consultants for a
total of four person-weeks. The assessment was conducted over the course of two
calendar weeks.

Contact Information

The following project managers were associated with the engagement:

Jasraj Bedi, Co-founder
jazzy@zellic.io

Chad McDonald, Engagement Manager
chad@zellic.io

The following consultants were engaged to conduct the assessment:

Jasraj Bedi, Co-founder/Engineer
jazzy@zellic.io

Katerina Belotskaia, Engineer
kate@zellic.io

Aaron Esau, Engineer
aaron@zellic.io

2.5 Project Timeline

The key dates of the engagement are detailed below.

September 25, 2023 Start of primary review period
October 10, 2023 End of primary review period

Zellic 8 LayerZero Labs

mailto:jazzy@zellic.io
mailto:chad@zellic.io
mailto:jazzy@zellic.io
mailto:kate@zellic.io
mailto:aaron@zellic.io

3 Detailed Findings

3.1 Inverted authentication logic in VaultManager.setRole

• Target: VaultManager
• Category: Coding Mistakes
• Likelihood: High

• Severity: Critical
• Impact: Critical

Description

VaultManager’s setRole function configures whether the caller is authorized to call
certain functions in the contract.

The setRole function itself performs a check to ensure that the configurer is authorized:

function setRole(Role _role, address _addr) external {
/) both owner and self are valid for all roles config
bool validCaller = msg.sender =) govInfo.roles[_role] |) msg.sender
=) govInfo.roles[Role.OWNER];

/) foundation can only change the operator if
/) (a) the operator is address(0x0) or
/) (b) the operator has not interacted with the contract for 30 day
if (!validCaller &) _role =) Role.OPERATOR) {

if (govInfo.roles[Role.OPERATOR] =) address(0) |) block.timestamp
- govInfo.operatorLastPing > 30 days) {

validCaller = msg.sender =) govInfo.roles[Role.FOUNDATION];
}

}

if (validCaller) revert Unauthorized();
govInfo.roles[_role] = _addr;

}

Note that execution reverts if the caller is valid — not if the caller is invalid.

Impact

Any caller — provided they are not authorized to configure roles—may configure roles
in the VaultManager.

Zellic 9 LayerZero Labs

An attacker could potentially configure amalicious owner address that registers a new
asset that mints USDV arbitrarily.

The following test demonstrates the ability to change any role:

function test_Zellic_setRole() public {
VaultManager vault = fixtureMain.vaultManager;

/) show that real owner cannot change owner to 0x1338
vm.expectRevert();
vm.prank(address(this));
vault.setRole(Role.OWNER, address(0x1338));

/) show that 0xdeadbeef can change owner to 0x1337
vm.prank(address(0xdeadbeef));
vault.setRole(Role.OWNER, address(0x1337));

}

Recommendations

Invert the validCaller condition before reverting:

/) [...))]

if (validCaller) revert Unauthorized();
if (!validCaller) revert Unauthorized();
govInfo.roles[_role] = _addr;

Remediation

This issue has been acknowledged by LayerZero Labs, and a fix was implemented in
commit 01d62e74.

Zellic 10 LayerZero Labs

https://github.com/layerZero-Labs/usdv//commit/01d62e74b0206289c403233520c1ab605c2f7235

3.2 Ability to cause reversion on destination chain

• Target: USDVBase
• Category: Coding Mistakes
• Likelihood: High

• Severity: Critical
• Impact: Critical

Description

It is possible to use the send function to send funds from the source chain to the ad-
dress 0 on the destination chain. The message will send (i.e., will not revert) on the
source side.

On the destination chain, however, when receiving the message — in the _sendAck
function after calling _mintBalance, which calls _credit — the execution will revert:

function _credit(address _to, uint32 _inboundColor, uint64 _amount)
internal notBlacklisted(_to) {
/) following OZ's ERC20
if (_to =) address(0)) revert InvalidUser();
if (_amount =) 0) return; /) transfer 0 is allowed

/) [...))]

/) increment the balance
state.balance += _amount;

userStates[_to] = state;
}

Impact

As of the assessment version, only support for Endpoint V1 has been implemented. In
LayerZero’s Endpoint V1, message execution is blocking by default. So, a reversion on
the destination chain would mean all future message execution would be blocked.

Regardless of the Endpoint version, a reversion on the destination would break the
global delta zero invariant since deltas cannot be finalized on the destination chain.

The following proof of concept demonstrates this behavior:

event PayloadStored(uint16 srcChainId, bytes srcAddress,

Zellic 11 LayerZero Labs

address dstAddress, uint64 nonce, bytes payload, bytes reason);
function test_Zellic_sendAddressZero() public {

uint32 color1 = fixtureMain.mintColors[0];
uint64 amount = 100;
mint(fixtureMain, color1, amount, ALICE);

/)send(fixtureMain.usdv, CHAINID_SIDE_1, ALICE, address(0), amount);
/)assertColorState(fixtureMain.usdv, color1, 0, 0); /) no surplus,
delta = 0

address usdv = fixtureMain.usdv;
uint16 toChainId = CHAINID_SIDE_1;
address sender = ALICE;
address receiver = address(0);

bytes memory options = abi.encodePacked(uint16(1), uint(200000)); /)
type1, gasLimit
IOFT.SendParam memory param = IOFT.SendParam({

to: MsgCodec.addressToBytes32(receiver),
dstEid: toChainId,
amountLD: amount,
minAmountLD: amount

});
(uint nativeFee, uint lzTokenFee) = IOFT(usdv).quoteSendFee(param,
options, false, ””);
MessagingFee memory msgFee = MessagingFee({nativeFee: nativeFee,
lzTokenFee: lzTokenFee});

/) expect that it's gonna get stored (because it failed to execute)
/) can't catch InvalidUser() :(
vm.expectEmit(false, false, false, false);
emit PayloadStored(0, ”0x”, address(0), 1, ”0x”, ”0x”);
vm.expectEmit(true, true, true, true);
emit SendOFT(bytes32(0), sender, amount, ””);

hoax(sender);
IOFT(usdv).send{value: nativeFee}(param, options, msgFee,
payable(sender), ””);

}

Zellic 12 LayerZero Labs

Recommendations

Check that the SendParams’s to address is nonzero in the send function:

function send(
SendParam calldata _param,
bytes calldata _extraOptions,
MessagingFee calldata _msgFee,
address payable _refundAddress,
bytes calldata _composeMsg

) external payable whenNotPaused returns (MessagingReceipt memory
msgReceipt)
{
if (_param.to =) address(0)) revert InvalidUser();

uint64 amount = _param.amountLD.toUint64();
(uint32 color, uint64 theta) = _send(amount);

msgReceipt
= IMessaging(getRole(Role.MESSAGING)).send{value: _msgFee.nativeFee}(

_param,
_extraOptions,
_msgFee,
_refundAddress,
_composeMsg,
color,
amount,
theta

);

emit SendOFT(msgReceipt.guid, msg.sender, amount, _composeMsg);
}

Remediation

This issue has been acknowledged by LayerZero Labs, and a fix was implemented in
commit 54f20163.

Zellic 13 LayerZero Labs

https://github.com/layerZero-Labs/usdv//commit/54f2016392ee3ca96cc9ab9ed482d5ce4796f5a1

3.3 Inverted authentication logic in VaultManager.rotateMinter

• Target: VaultManager
• Category: Coding Mistakes
• Likelihood: High

• Severity: High
• Impact: High

Description

The VaultManager contract’s rotateMinter function changes the minter address for a
given color. Its logic to determine whether the caller is authorized is inverted:

///)) @dev unregistered color will have addr as 0x0, don't need to check
color here

function rotateMinter(uint32 _color, address _newAddr) external {
if (registry.colorToMinter[_color].addr =) msg.sender) revert

Unauthorized();
registry.colorToMinter[_color].addr = _newAddr;

}

Any caller — except the currently configuredminter — can change theminter address.

Impact

An attacker can change the minter address for any color and then withdraw its re-
wards.

The following test demonstrates the ability to change any color’s configured minter
address:

function test_Zellic_rotateMinterAuthLogicInverted() public {
uint32 color_1 = fixtureMain.mintColors[0];
mint(fixtureMain, color_1, 100, ALICE);

address minter = fixtureMain.vaultManager.minterInfoOf(color_1).addr;

/) let's try rotating it as the minter
vm.expectRevert(IVaultManager.Unauthorized.selector);
vm.prank(minter);
fixtureMain.vaultManager.rotateMinter(color_1, address(0x1337));

/) now show that a random address can

Zellic 14 LayerZero Labs

vm.prank(address(0xdeadbeef));
fixtureMain.vaultManager.rotateMinter(color_1, address(0x1337));

}

Additionally, an attacker could change the address from 0 and trick the onlyRegister
edColor check into allowing an invalid color.

Recommendations

Invert the following condition:

///)) @dev unregistered color will have addr as 0x0, don't need to check
color here

function rotateMinter(uint32 _color, address _newAddr) external {
if (registry.colorToMinter[_color].addr =) msg.sender) revert

Unauthorized();
if (registry.colorToMinter[_color].addr !) msg.sender) revert

Unauthorized();
registry.colorToMinter[_color].addr = _newAddr;

}

Remediation

This issue has been acknowledged by LayerZero Labs, and a fix was implemented in
commit a4c78050.

Zellic 15 LayerZero Labs

https://github.com/layerZero-Labs/usdv//commit/a4c78050309f9ca7bfa43f464ff5e781fb04eb4b

3.4 Redemption with positive delta fails to update shares

• Target: VaultManager
• Category: Coding Mistakes
• Likelihood: Medium

• Severity: Low
• Impact: Low

Description

The redeem function allows a user to receive collateral tokens in exchange for USDV.

Judging by the documentation, the USDV tokens of the color that were redeemed, and
the vault shares of the color, _self.colorToMinter[_color].shares, should be burned.
However, the function will burn the shares of the color for which the value of delta.
amount from usedwill be negative.

If _self.colorStates[_color].delta of the redeemed color is negative or zero, the
usdv.redeem function returns an array used, which will contain only one element, Delt
a(_redeemedColor, amountInt64), where _redeemedColor is the color of tokens owned
by the user and a negative value amountInt64 for redeem.

But if _self.colorStates[_color].delta is positive, the first element of the used array
will contain Delta with zero amount for the color of tokens owned by the user but a
negative amount for the colors from the _deficits array, for which the shares will be
burned instead.

function redeem(
address _token,
address _receiver,
uint64 _amount,
uint32[] calldata _deficits

) external nonReentrant whenNotPaused notZeroAmount(_amount)
returns (uint amountAfterFee) {
/) burn USDV from msg.sender
/) usdv.burn will burn all surplus then minted
/) only returns negative delta
Delta[] memory used = usdv.redeem(msg.sender, _amount, _deficits);

int64 pending = int64(_amount);
for (uint i = 0; i < used.length; i+)) {

Delta memory delta = used[i];

if (delta.amount > 0) revert InvalidAmount();
if (delta.amount < 0) {

Zellic 16 LayerZero Labs

/) burn surplus
_burnVST(delta.color, uint64(-delta.amount), false);
pending += delta.amount;

}
}
if (pending !) 0) revert InvalidAmount();

/) transfer collateral to receiver
Asset.Info storage asset = assetInfos[_token];
amountAfterFee = asset.redeem(govInfo, _receiver, _amount);

emit Redeem(msg.sender, _amount);
}

Impact

This behavior contradicts the documentation.

Recommendations

Burn shares of the same color as the user owns.

Remediation

This issue has been acknowledged, and no fix is needed as it aligns with the intended
behavior.

Zellic 17 LayerZero Labs

3.5 The pendingRemint[delta.color] is mistakenly reduced

• Target: VaultManager
• Category: Coding Mistakes
• Likelihood: High

• Severity: High
• Impact: High

Description

The pendingRemint is used by the remind function to cache the number of shares that
should have been burned or minted, but only in cases where delta changes lead to a
negative result of the number of vault shares.

The function clearPendingRemint allows to reset the pendingRemint amount when the
number of shares is sufficient. The function accepts the _delta array of Delta struc-
tures consisting of values color and signed amount.

For each color from the _delta array, the function will check that the pendingRemint is
not zero, which means it can be cleaned.

The delta.amount is how much the pendingRemint value should be changed for the
corresponding delta.color. The delta.amount and pendingRemint[delta.color] can
be a positive or negative amount, but it must be of the same sign.

So if delta.amount is positive, the pendingRemint[delta.color] will be decreased by
delta.amount and a corresponding amount of shares will be minted. But if the delta.
amount is negative, the negative pendingRemint[delta.color] amount will be reduced
by it, resulting in the addition of the negative numbers.

For example, if pendingRemint[delta.color] = -100 and delta.amount = -100, the re-
sult will be -200 instead of 0.

function clearPendingRemint(Delta[] calldata _delta)
external whenNotPaused {

int64 totalDelta;
for (uint i = 0; i < _delta.length; i+)) {

Delta calldata delta = _delta[i];

int64 pendingQuota = pendingRemint[delta.color];
if (pendingQuota =) 0) revert InvalidAmount();
if (pendingQuota ^ delta.amount < 0) revert WrongSign();

/) converges pendingRemint to zero
if (delta.amount > 0) {

/) surplus delta more than surplus quota, i.e. revert if

Zellic 18 LayerZero Labs

quota(10) < amount(11)
if (pendingQuota < delta.amount) revert InvalidAmount();
_mintVST(delta.color, uint64(delta.amount), false);
pendingRemint[delta.color] -= delta.amount;

} else {
/) deficit delta more than deficit quota, i.e. revert if

quota(-10) > amount(-11)
if (pendingQuota > delta.amount) revert InvalidAmount();

/)1. pendingQuota = -100 delta.amount = -100
pendingRemint[delta.color] = -100 + (-100) = -200

_burnVST(delta.color, uint64(-delta.amount), false); /)
2.

pendingRemint[delta.color] += delta.amount; /) -100 +10 =
-110

}
totalDelta += delta.amount;

}
if (totalDelta !) 0) revert NotDeltaZero();

}

Impact

The pendingRemint[delta.color] amount will be incorrectly reduced for each clearP
endingRemint call, and if shares of this color have to be saved for minting in the future,
they will be lost until this value is increased to 0.

Recommendations

Rather than increasning the stored pendingRemint, decrease it to account for the neg-
ative delta:

pendingRemint[delta.color] += delta.amount
pendingRemint[delta.color] -= delta.amount

Remediation

This issue has been acknowledged by LayerZero Labs, and a fix was implemented in
commit da8a4201.

Zellic 19 LayerZero Labs

https://github.com/layerZero-Labs/usdv//commit/da8a4201b7f9ffecd56dbbf537a2466876011990

3.6 Use of blocking LzApp

• Target: MessagingV1
• Category: Code Maturity
• Likelihood: N/A

• Severity: High
• Impact: High

Description

The MessagingV1 contract inherits the LzApp contract to interact with LayerZero to
send and receive cross-chain messages.

MessagingV1 overrides the lzReceive function from LzApp to add the necessary func-
tionality of handling receiving messages.

function lzReceive(
uint16 _srcChainId,
bytes calldata _srcAddress,
uint64 _nonce,
bytes calldata _message

) public virtual override {
/) lzReceive must be called by the endpoint for security
require(_msgSender() =) address(lzEndpoint), ”LzApp: invalid endpoint
caller”);

bytes memory trustedRemote = trustedRemoteLookup[_srcChainId];
/) if will still block the message pathway from (srcChainId,
srcAddress). should not receive message from untrusted remote.
require(

_srcAddress.length =) trustedRemote.length &)
trustedRemote.length > 0 &)
keccak256(_srcAddress) =) keccak256(trustedRemote),

”LzApp: invalid source sending contract”
);

_handleLzReceive(_srcChainId, _srcAddress, _nonce, _message);
}

Impact

Overriding this function provides no additional functionality; that is, MessagingV1
might as well rename _handleLzReceive to _blockingLzReceive as the security checks

Zellic 20 LayerZero Labs

https://github.com/LayerZero-Labs/solidity-examples/blob/main/contracts/lzApp/LzApp.sol#L35-L52
https://github.com/LayerZero-Labs/solidity-examples/blob/main/contracts/lzApp/LzApp.sol#L35-L52

of lzReceivewill still be performed.

More importantly, LzApp is blocking by default. Any reversion on the destination chain
will result in the entire path being blocked — at least, until the OApp owner has the
opportunity to intervene. This can happenwhenUSDV is sent to a blacklisted address.

Recommendations

To minimize errors and potential security issues, it is advisable for the application to
inherit from NonblockingLzApp and override the _nonblockingLzReceive function in-
stead of _blockingLzReceive or lzReceive.

Remediation

The issue with inheriting from LzApp was fixed in commit 03f7e66d.

The issue with overriding the nonblockingLzReceive function was fixed in commit
a58fe689.

Zellic 21 LayerZero Labs

https://github.com/LayerZero-Labs/solidity-examples/blob/main/contracts/lzApp/LzApp.sol#L35-L52
https://gitea.zellic.io/jazzy/layerzero-normandy/commit/03f7e66def3fb74fe84b775e87b9037f3631443a
https://gitea.zellic.io/jazzy/layerzero-normandy/commit/a58fe68985beedd9d9536db2162004d35ab15940

3.7 Arithmetic error in redeem

• Target: USDVBase
• Category: Code Maturity
• Likelihood: N/A

• Severity: Informational
• Impact: Informational

Description

The _burnBalance function subtracts from _totalSupply before the call to _debit has
a chance to check the amount for validity:

function _burnBalance(address _from, uint64 _targetAmount)
internal returns (uint32 color) {
/) change balance
totalSupply_ -= _targetAmount;
color = _debit(_from, _targetAmount);
emit Transfer(_from, address(0), _targetAmount);

}

/) [...))]

function _debit(address _from, uint64 _amount)
internal notBlacklisted(_from) returns (uint32 color) {
if (_from =) address(0)) revert InvalidUser();
uint64 balance = userStates[_from].balance;
if (balance < _amount) revert InsufficientBalance();
userStates[_from].balance = balance - _amount;
return userStates[_from].color;

}

Impact

Attempting to redeem an amount greater than the supply results in an arithmetic error
instead of an InsufficientBalance() error.

Recommendations

Subtract from totalSupply_ after debiting the account so the balance < _amount check
executes first.

Zellic 22 LayerZero Labs

function _burnBalance(address _from, uint64 _targetAmount)
internal returns (uint32 color) {
/) change balance
totalSupply_ -= _targetAmount;
color = _debit(_from, _targetAmount);
totalSupply_ -= _targetAmount;
emit Transfer(_from, address(0), _targetAmount);

}

Remediation

This issue has been acknowledged by LayerZero Labs.

Zellic 23 LayerZero Labs

3.8 Bypassable minterRemintFee and operatorRemintFee

• Target: Operator
• Category: Coding Mistakes
• Likelihood: N/A

• Severity: Informational
• Impact: Informational

Description

Note that the fees round down:

function getRemintFees(
address /)_caller*),
Delta[] calldata /)deltas*),
uint64 _amount

) external view returns (uint64 minterRemintFee,
uint64 operatorRemintFee) {
minterRemintFee = (_amount * minterRemintFeeBps) / 10000;
operatorRemintFee = (_amount * operatorRemintFeeBps) / 10000;

}

Impact

If the _amount is low enough, the fee calculation will round down to zero, resulting in
no fees being taken when reminting.

In practice, it is unlikely this would be exploited because gas fees can be prohibitively
expensive. However, a user may make several smaller transactions (as opposed to
one large transaction) to exploit the rounding-down behavior to minimize their fees.

Recommendations

Round up the division and/or consider requiring that both fees are nonzero if the mul-
tipliers are also nonzero.

Remediation

This issue has been acknowledged by LayerZero Labs.

Zellic 24 LayerZero Labs

3.9 Unimplemented ping function

• Target: VaultManager
• Category: Coding Mistakes
• Likelihood: N/A

• Severity: Informational
• Impact: Informational

Description

The following function only executes the code in the onlyRolemodifier:

function ping() external onlyRole(Role.OPERATOR) {
/) ping operation is done in the onlyOperator modifier

}

However, the comment seems incorrect; the modifier does not contain any code re-
lating to pinging:

modifier onlyRole(Role _role) {
if (msg.sender !) govInfo.roles[_role]) revert Unauthorized();
_;

}

Impact

The operator would not be able to ping without using setFeeBps.

Recommendations

Implement this functionality:

function ping() external onlyRole(Role.OPERATOR) {
/) ping operation is done in the onlyOperator modifier
govInfo.ping();

}

Remediation

This issue has been acknowledged by LayerZero Labs, and a fix was implemented in
commit 3723f8f0.

Zellic 25 LayerZero Labs

https://github.com/layerZero-Labs/usdv//commit/3723f8f008d82921551d4b9a9e323ae6567dec12

4 Discussion

The purpose of this section is to document miscellaneous observations that we made
during the assessment. These discussion notes are not necessarily security related
and do not convey that we are suggesting a code change.

4.1 Ability to rotateMinter to 0 address

It is possible to rotateMinter to 0, which would disable minting a certain color indef-
initely and prevent rewards from being claimable.

This behavior may or may not be intended; however, if it is intended, note that USDV
may still be reminted to the color.

4.2 Enforced color is per chain

The setEnforceColor function enforces a color on the chain it is called on only.

Zellic 26 LayerZero Labs

5 Assessment Results

At the time of our assessment, the reviewed code was not deployed to the Ethereum
Mainnet.

During our assessment on the scoped USDV contracts, we discovered nine findings.
Two critical issueswere found. Threewere of high impact, onewas of low impact, and
the remaining findingswere informational in nature. LayerZero Labs acknowledged all
findings and implemented fixes.

5.1 Disclaimer

This assessment does not provide any warranties about finding all possible issues
within its scope; in otherwords, the evaluation results do not guarantee the absence of
any subsequent issues. Zellic, of course, also cannotmake guarantees about any code
added to the project after the version reviewed during our assessment. Furthermore,
because a single assessment can never be considered comprehensive, we always
recommend multiple independent assessments paired with a bug bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these
recommendations are intended to convey how an issue may be resolved (i.e., the
idea), but they may not be tested or functional code. These recommendations are
not exhaustive, and we encourage our partners to consider them as a starting point
for further discussion. We are happy to provide additional guidance and advice as
needed.

Finally, the contents of this assessment report are for informational purposes only;
do not construe any information in this report as legal, tax, investment, or financial
advice. Nothing contained in this report constitutes a solicitation or endorsement of
a project by Zellic.

Zellic 27 LayerZero Labs

	About Zellic
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About USDV
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Inverted authentication logic in VaultManager.setRole
	Ability to cause reversion on destination chain
	Inverted authentication logic in VaultManager.rotateMinter
	Redemption with positive delta fails to update shares
	The pendingRemint[delta.color] is mistakenly reduced
	Use of blocking LzApp
	Arithmetic error in redeem
	Bypassable minterRemintFee and operatorRemintFee
	Unimplemented ping function

	Discussion
	Ability to rotateMinter to 0 address
	Enforced color is per chain

	Assessment Results
	Disclaimer

